RIP, RISP
by Ken Arneson
2004-04-21 17:48

After my rant about the A’s not driving in runs I heard: “The A’s will be fine. Small sample size.”

Sure the A’s will be fine. They’ve been fine for four years. It’s just this one detail about them, their inability to drive in runs, that annoys me. But I disagree about the sample size. The sample size is not that small.

With 2 outs, when a walk is not as good as a hit, is when I get the most annoyed at the A’s failure to drive in runs. So here are the AL batting averages for Runners in Scoring Position, 2 Outs for the last three seasons (’04/’03/’02):

Team 2004 2003 2002 ’02-’04 avg
Bos .304 .275 .262 .270
Chi .327 .263 .268 .268
Sea .228 .287 .248 .266
Tor .144 .297 .232 .259
Kc .302 .272 .239 .257
Nyy .155 .250 .265 .253
Ana .310 .244 .257 .253
Min .228 .249 .254 .251
Tam .143 .241 .258 .245
Tex .239 .241 .240 .240
Bal .274 .247 .211 .231
Cle .296 .210 .226 .221
Oak .217 .223 .219 .221
Det .211 .188 .229 .209

Sure, the A’s might improve on their current .217 average with RISP and 2 outs. I keep waiting for our luck to even out. But I’ve been waiting over two years now, and the A’s keep regressing to Detroit instead of to the mean.

So far this year, it looks like the same old stuff as the last two years. How much longer should I hold onto my faith in regression to the mean before I give up and declare this a flaw in the design?

This is Ken Arneson's blog about baseball, brains, art, science, technology, philosophy, poetry, politics and whatever else Ken Arneson feels like writing about
Original Sites
Recent Posts
Contact Ken
Twitter

LinkedIn

Email: Replace the first of the two dots in this web site's domain name with an @.
Google Search
Web
Toaster
Ken Arneson
Archives
2021
01   

2020
10   09   08   07   06   05   
04   

2019
11   

2017
08   07   

2016
06   01   

2015
12   11   03   02   

2014
12   11   10   09   08   04   
03   01   

2013
12   10   08   07   06   05   
04   01   

2012
12   11   10   09   04   

2011
12   11   10   09   08   07   
04   02   01   

2010
10   09   06   01   

2009
12   02   01   

2008
12   11   10   09   08   07   
06   05   04   03   02   01   

2007
12   11   10   09   08   07   
06   05   04   03   02   01   

2006
12   11   10   09   08   07   
06   05   04   03   02   01   

2005
12   11   10   09   08   07   
06   05   04   03   02   01   

2004
12   11   10   09   08   07   
06   05   04   03   02   01   

2003
12   11   10   09   08   07   
06   05   04   03   02   01   

2002
12   10   09   08   07   05   
04   03   02   01   

1995
05   04   02